Grade 10 Academic Nath Quadratics 2 Practice Test A

Answers are at the end of the test

- 1. Describe the parabola $y = 7x^2$ using the parabola $y = x^2$ as a comparison. Describe the steps, vertex and the axis of symmetry.
- 2. If the parabola $y = x^2$ is compressed to $\frac{1}{4}$ if its original size and reflected in the x-axis what would be its equation?
- 3. Write the equation of the parabola congruent to $y = 2x^2$ that has been shifted 5 units to right and down 3 units.
- 4. Write the equation of the parabola congruent to $y = 5x^2$ that has been shifted 7 units up and 3 units to the left.
- 5. Determine the equation of the parabola that is obtained by taking the parabola $y = x^2$ stretching it vertically by a factor of 6, reflecting it in the x-axis, shifting it left 4 units and down 5 units.
- 6. List the transformations done to $y = x^2$ to obtain $y = -\frac{1}{2}(x-4)^2 + 6$. Sketch the image and pre-image curves.
- 7. Determine the vertex of the parabola $y = -3(x-2)(x-12)^2$ using symmetry.
- 8. Convert $y = 2x^2 11x + 5$ to factored form y = a(x-r)(x-s). Locate the x-intercepts and the vertex.
- 9. Determine the vertex of the parabola $y = x^2 4x + 9$ after completing the square.
- 10. Determine the vertex of the parabola $y = -3x^2 + 24x 1$ after completing the square.
- 11. Determine the key points (vertex, x-intercepts, y-intercept) and the equation of the axis of symmetry for $y = 2(x-3)^2 8$. Graph showing the key points.
- 12. Graph $y = -\frac{1}{2}(x+2)^2 + 2$ using key points. Include at least 5 points in your graph.

Grade 10 Academic Wath Quadratics 2 Practice Test A

Answers are at the end of the test

- 13. A parabola has vertex at (3, 5) and passes through (4, 9). Determine its equation in vertex and standard form.
- 14. A parabola is congruent to $y = 2x^2$ and passes through (-2, -2) and (-5, 4). Determine its equation in vertex and standard form.
- 15. The height of a ball thrown up in the air is given as $h = -4.9t^2 + 29.4t + 1$. Determine the maximum height reached by the ball and how long it took to get there. (*h* is in metres and *t* in seconds)
- 16. The cost in \$ to run an electrical appliance is given by $C = 2t^2 24t + 145$, where t = the time in months the appliance is running. What is the minimum cost of running the appliance?
- 17. A farmer has 600m of rope to fence off a rectangular field. He is fencing off 3 sides. The 4th side is along a river and requires no fence along that side. Determine the dimensions that give the maximum area.
- 18. Two numbers have a sum of 4. Determine the numbers if the sum of their squares is to be a minimum.

Answers

1. steps 7, 21, 35, Vertex
$$(0,0)$$
, axis $x = 0$

2.
$$y = -\frac{1}{4}x^2$$

3.
$$y = 2(x-5)^2 - 3$$

4.
$$y = 5(x+3)^2 + 7$$

5.
$$y = -6(x+4)^2 - 5$$

6. vert stretch by 0.5, refl in x-axis, 4 rt 6 up

7. vertex at (7,75)

8. $x - \text{int } 0.5, 5 \quad \text{vertex} \left(\frac{11}{4}, -\frac{81}{8} \right)$

9. (2,5)

10.
$$(-4,49)$$

11.
$$V(3,-8)$$
, x-int -1, 7 y-int 10 axis $x = 3$

12.
$$V(-2,2)$$
, x-int 0, 4 y-int 0

13.
$$y = 4(x-3)^2 + 5$$
 $y = 4x^2 - 24x + 41$

14.
$$y = 2(x+3)^2 - 4$$
 $y = 2x^2 + 12x + 14$

15. 45.1*m*, 3*s*

16. \$73 after 6 months

17. 150*m* by 450*m*

18. 2 and 2